Mix Design M-50 Grade

The mix design M-50 grade (Using Admixture –Sikament) provided here is for reference purpose only. Actual site conditions vary and thus this should be adjusted as per the location and other factors.

Parameters for mix design M50

Grade Designation = M-50 Type of cement = O.P.C-43 grade Brand of cement = Vikram (Grasim) Admixture = Sika [Sikament 170 (H)] Fine Aggregate = Zone-II **Sp. Gravity** Cement = 3.15 Fine Aggregate = 2.61 Coarse Aggregate (20mm) = 2.65 Coarse Aggregate (10mm) = 2.66 Minimum Cement (As per contract) = 400 kg / m³ Maximum water cement ratio (As per contract) = 0.45

Mix Calculation: -

1. Target Mean Strength = $50 + (5 \times 1.65) = 58.25$ Mpa

2. Selection of water cement ratio:-

Assume water cement ratio = 0.35

3. Calculation of water: -

Approximate water content for 20mm max. Size of aggregate = $180 \text{ kg}/\text{m}^3$ (As per Table No. 5 , IS : 10262). As plasticizer is proposed we can reduce water content by 20%. Now water content = $180 \times 0.8 = 144 \text{ kg}/\text{m}^3$

4. Calculation of cement content:-

Water cement ratio = 0.35

Water content per cum of concrete = 144 kg

Cement content = $144/0.35 = 411.4 \text{ kg} / \text{m}^3$

Say cement content = 412 kg / m^3 (As per contract Minimum cement content 400 kg / m^3) Hence O.K.

5. Calculation for C.A. & F.A.: [Formula's can be seen in earlier posts]-

Volume of concrete = 1 m^3 Volume of cement = $412 / (3.15 \times 1000) = 0.1308 \text{ m}^3$ Volume of water = $144 / (1 \times 1000) = 0.1440 \text{ m}^3$ Volume of Admixture = $4.994 / (1.145 \times 1000) = 0.0043 \text{ m}^3$ Total weight of other materials except coarse aggregate = 0.1308 + 0.1440 + 0.0043 =0.2791 m³ Volume of coarse and fine aggregate = $1 - 0.2791 = 0.7209 \text{ m}^3$ Volume of F.A. = $0.7209 \times 0.33 = 0.2379 \text{ m}^3$ (Assuming 33% by volume of total aggregate) Volume of C.A. = $0.7209 - 0.2379 = 0.4830 \text{ m}^3$ Therefore weight of F.A. = $0.2379 \times 2.61 \times 1000 = 620.919 \text{ kg/m}^3$ Say weight of F.A. = 621 kg/ m^3 Therefore weight of C.A. = $0.4830 \times 2.655 \times 1000 = 1282.365 \text{ kg/ m}^3$ Say weight of C.A. = 1284 kg/m^3 Considering 20 mm: 10mm = 0.55: 0.45 20mm = 706 kg. 10mm = 578 kg . Hence Mix details per m³ Increasing cement, water, admixture by 2.5% for this trial Cement = 412 X 1.025 = 422 kg Water = 144 X 1.025 = 147.6 kg Fine aggregate = 621 kgCoarse aggregate 20 mm = 706 kg Coarse aggregate 10 mm = 578 kgAdmixture = 1.2 % by weight of cement = 5.064 kg. Water: cement: F.A.: C.A. = 0.35: 1: 1.472: 3.043

Observation: -

A. Mix was cohesive and homogeneous.

B. Slump = 120 mm

C. No. of cube casted = 9 Nos.

7 days average compressive strength = 52.07 MPa.

28 days average compressive strength = 62.52 MPa which is greater than 58.25MPa Hence the mix accepted.

We are thankful to Er Gurjeet Singh for this valuable information.

Source: http://www.engineeringcivil.com/mix-design-m-50-grade.html